Folding behavior of a T-shaped, ribosome-binding translation enhancer implicated in a wide-spread conformational switch
نویسندگان
چکیده
Turnip crinkle virus contains a T-shaped, ribosome-binding, translation enhancer (TSS) in its 3'UTR that serves as a hub for interactions throughout the region. The viral RNA-dependent RNA polymerase (RdRp) causes the TSS/surrounding region to undergo a conformational shift postulated to inhibit translation. Using optical tweezers (OT) and steered molecular dynamic simulations (SMD), we found that the unusual stability of pseudoknotted element H4a/Ψ3 required five upstream adenylates, and H4a/Ψ3 was necessary for cooperative association of two other hairpins (H5/H4b) in Mg2+. SMD recapitulated the TSS unfolding order in the absence of Mg2+, showed dependence of the resistance to pulling on the 3D orientation and gave structural insights into the measured contour lengths of the TSS structure elements. Adenylate mutations eliminated one-site RdRp binding to the 3'UTR, suggesting that RdRp binding to the adenylates disrupts H4a/Ψ3, leading to loss of H5/H4b interaction and promoting a conformational switch interrupting translation and promoting replication.
منابع مشابه
The 3' proximal translational enhancer of Turnip crinkle virus binds to 60S ribosomal subunits.
During cap-dependent translation of eukaryotic mRNAs, initiation factors interact with the 5' cap to attract ribosomes. When animal viruses translate in a cap-independent fashion, ribosomes assemble upstream of initiation codons at internal ribosome entry sites (IRES). In contrast, many plant viral genomes do not contain 5' ends with substantial IRES activity but instead have 3' translational e...
متن کاملA ribosome-binding, 3' translational enhancer has a T-shaped structure and engages in a long-distance RNA-RNA interaction.
Many plant RNA viruses contain elements in their 3' untranslated regions (3' UTRs) that enhance translation. The PTE (Panicum mosaic virus-like translational enhancer) of Pea enation mosaic virus (PEMV) binds to eukaryotic initiation factor 4E (eIF4E), but how this affects translation from the 5' end is unknown. We have discovered a three-way branched element just upstream of the PEMV PTE that ...
متن کاملThe kissing-loop T-shaped structure translational enhancer of Pea enation mosaic virus can bind simultaneously to ribosomes and a 5' proximal hairpin.
The Pea enation mosaic virus (PEMV) 3' translational enhancer, known as the kissing-loop T-shaped structure (kl-TSS), binds to 40S subunits, 60S subunits, and 80S ribosomes, whereas the Turnip crinkle virus (TCV) TSS binds only to 60S subunits and 80S ribosomes. Using electrophoretic mobility gel shift assay (EMSA)-based competition assays, the kl-TSS was found to occupy a different site in the...
متن کاملA theophylline responsive riboswitch based on helix slipping controls gene expression in vivo.
Riboswitches are newly discovered regulatory elements which control a wide set of basic metabolic pathways. They consist solely of RNA, sense their ligand in a preformed binding pocket and perform a conformational switch in response to ligand binding resulting in altered gene expression. We have utilized the enormous potential of RNA for molecular sensing and conformational changes to develop n...
متن کاملThe 3' end of Turnip crinkle virus contains a highly interactive structure including a translational enhancer that is disrupted by binding to the RNA-dependent RNA polymerase.
Precise temporal control is needed for RNA viral genomes to translate sufficient replication-required products before clearing ribosomes and initiating replication. A 3' translational enhancer in Turnip crinkle virus (TCV) overlaps an internal T-shaped structure (TSS) that binds to 60S ribosomal subunits. The higher-order structure in the region was examined through alteration of critical seque...
متن کامل